BAS / BMS

Non Spring Return Actuators for Ball Valves

Product Bulletin

The New Series Electric Non Spring Return
Actuators are used to provide accurate positioning on Joventa ${ }^{\circledR}$ JVx05 Series DN15 up to DN50 ball valves in Heating, Ventilating and Air Conditioning (HVAC) applications from 8 to 35 Nm rated torque.

■ Automatic Signal Input Detection model On/Off, Floating and Proportional Increase availability at distributors. Simplify retrofit.

- High speed actuator model

Allow applications in loop that require a quick response time.

- Optional Auxiliary Switch \& potentiometer feedback

Provides line voltage capable single Pole Double-Throw (SPDT) switch and $140 \Omega, 1 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega$ or $10 \mathrm{~K} \Omega$ feedback potentiometric.

- Direct-Coupled Design

Requires no separate linkage because they are ready for direct attachment to Johnson Controls JVx05 Series valves by driving one captive screw.

- Rugged IP54 Rated Enclosure

Provides a high degree of protection from dust, splashing water and rough handling.

- Electronic Stall Detection

Protects from overload at all angles of rotation. The actuator may be stalled anywhere in its rotation range without the need for mechanical end switches.

- Microprocessor-controlled Brushless DC Motor

Provides constant runtime independent of torque and increases life cycle by reducing wear.

Installation

Install the ball valve with the actuator at or above the center line of the horizontal piping.

WARNING: In steam applications, install the valve with the stem horizontal to the piping.
Failure to follow this precaution may shorten the life of the actuator.

WARNING: Do not install or use this actuator in or near environments where corrosive substances or vapors could be present.
Exposure of the actuator to corrosive environments may damage the device's internal components, and will void the warranty.

Mounting the actuator Inline to the Valve

1. Make sure the valve stem is inline to the valve Openings.

2. Verify that the actuator handle is inline to the actuator.

3. Place the actuator inline into the valve.
4. Tighten the actuator handle to the valve.

Mounting the Actuator Perpendicular to the Valve

1. Loosen but do not remove the screw that holds the actuator to the valve.

2. Remove the actuator from the valve.
3. Press and hold the gear release.

The actuator should be against the internal CCW stop.
4. Lift the handle out of the actuator and rotate 90°
counterclockwise.

5. Reinsert the handle perpendicular into the actuator and tighten the handle screw.

M9000-561 Thermal Barrier

The Thermal barrier optional kit extends the application of these actuators in combination with JVx05 ball valves. Linking together valve and actuator using the M9000-561 you can include applications with low pressure steam up to $123^{\circ} \mathrm{C}$ at $103 \mathrm{kPa}\left(250^{\circ} \mathrm{F}\right.$ at 15 psig$)$ and hot water up to $140^{\circ} \mathrm{C}\left(284{ }^{\circ} \mathrm{F}\right)$.

Accessing the DIP Switches

Locate the oval cover on the front of the unit and pull the cover outward. See installation sheet for further information, DIP switches and LEDs meaning.

Remove the oval cover

BMS1.xx
DIP Switches and LEDs Placement

BMS2.xx
DIP Switches and LEDs Placement

BASx.xx DIP Switches and LEDs Placement

Automatic Signal Input Detection model

BMS1.10, BMS1.20 and BMS1.35-1 Actuator operate with 24 VAC/DC to provide 10, 20 and 35 Nm rated torque. The actuators can be used with on/off, floating, or proportional controllers in HVAC systems that are controlled by an electronic controller or positioner.

When the Actuators work in proportional mode, the actuator responds to 0 to 10 VDC or 2 to 10 VDC control signals. With the addition of a 500 ohm resistor, the actuator responds to a 0 to 20 mA or 4 to 20 mA signal. A 0 to 10 VDC or 2 to 10 VDC feedback signal indicates position.

DIP Switches Settings

Command Signal	Feedback Signal	Setting User Interfa	
0 to 10 VDC	Direct 0 to 10 VDC		
24 VAC Floating or ON/OFF			
0 to 10 VDC	Reverse 0 to 10 VDC		
24 VAC Floating or ON/OFF			
2 to 10 VDC	$\begin{gathered} \text { Direct } \\ 2 \text { to } 10 \text { VDC } \end{gathered}$		
24 VAC Floating or ON/OFF			
2 to 10 VDC	Reverse 2 to 10 VDC		
24 VAC Floating or ON/OFF			

Auto Calibration Mode

The actuator enters auto calibration mode and positions the coupler to the maximum and minimum end stops to identify the range of travel. To complete the auto calibration process, press Enter/Autocal until all three LEDs are on.

Setting the SPAN and OFFSET Proportional Command Signal to Other Values

The actuator has the possibility to adjust the input signal changing the working range and the starting point of the signal. The valid Offset values are 0 to 10 VDC and the valid Span values are 2 to 10 VDC. Adjusting span and offset the feedback voltage of the actuator is automatically set as 2-10 VDC.

Example

Command Signal	Feedback Signal	Setting User Interface
Offset $=5$ Span $=7$	Active $2-10 \mathrm{VDC}$	

1. Connect a digital multimeter between the orange (feedback) and black (common) wires. See Wiring for more wiring information.

2. Press Enter/Autocal.

Note: To adjust the span and offset, press but not hold Enter/Autocal.
Holding Enter/Autocal for longer than three seconds triggers an autocal.
The Offset Adj. LED turns on, and the multimeter displays the current offset value.
3. Press INC.

The Offset Adj. LED flashes. The voltage reading on the multimeter increases 0.5 VDC each time you press the button. Press INC. until you reach the desired voltage.
Once you press INC., if no further action is required, the Offset Adj. LED stops flashing after 10 seconds. The actuator exits the program mode and the original offset value remains unchanged.
4. Press Enter/Autocal.

The Offset Adj. LED turns off indicating that the desired Offset Adj. value was recorded. The Span Adj. turns on, and the multimeter displays the present SPAN value.
5. Press INC.

The Span Adj. LED flashes. The voltage reading on the multimeter increases by 0.5 VDC each time you press the button. Press INC. until you reach the desired voltage.
Once you press INC., if no further action is required, the Offset and Adj. LED stops flashing after 10 seconds. The actuator exits the program mode and the original offset value remains unchanged.
6. Press Enter/Autocal.

The Span Adj. LED turns off indicating that the desired Span Adj. setting is recored, and the actuator exits the program mode.

Reading the SPAN and OFFSET Proportional Command Signal Voltage Settings

1. Connect a digital multimeter between the orange (feedback) and black (common) wires. See Wiring for more wiring information.

2. Press Enter/Autocal.

The Offset Adj. LED turns on, and the multimeter displays the current offset value.
IMPORTANT: Do not press INC. Otherwise your observed offset voltage setting will change.

3. Press Enter/Autocal.

The Offset Adj. LED turns off, the Span Adj. LED turns on, and the multimeter displays the present SPAN value.
IMPORTANT: Do not press INC. Otherwise your observed SPAN voltage setting will change.

4. Press Enter/Autocal.

The Span Adj. LED turns off.
Clearing the SPAN and OFFSET Proportional Command Signal Voltage Setting
Cycle DIP switch two between 2 to 10 and 0 to 10. The active setting is the final state of DIP switch two.

Line voltage models and High Speed models (ON/OFF and Floating)

The BAS2.xx operates with AC 100 to 240 V (AC 85 to 264 V). The actuator is design to be used with ON/OFF or Floating controls in HVAC systems.

The BAS1.08Z and BAS1.16Z operate with 24 V DC/AC.

DIP Switch Settings

Command Signal	Setting User Interface
Reverse	
Direct	

Ordering Informations

Code	Torque (Nm)	Running Time (s)	Controls Signal	Supply Voltage
BAS1.08Z	8	8	ON/OFF and Floating	24V AC/DC
BAS2.08Z	8	8	ON/OFF and Floating	100 to 240 VAC
BAS2.10	10	35	ON/OFF and Floating	100 to 240 VAC
BMS2.10	10	35	Proportional	100 to 240 VAC
BMS1.10	10	35	ON/OFF, Floating and Proportional	24 V AC/DC
BAS1.16Z*	16	16	ON/OFF and Floating	24 V AC/DC
BAS2.16Z*	16	16	ON/OFF and Floating	100 to 240 VAC
BAS2.20	20	90	ON/OFF and Floating	100 to 240 VAC
BMS2.20	20	90	Proportional	100 to 240 VAC
BMS1.20	20	90	ON/OFF, Floating and Proportional	24 V AC/DC
BAS2.35	35	150	ON/OFF and Floating	100 to 240 VAC
BMS2.35	35	150	Proportional	100 to 240 VAC
BMS1.35	35	150	ON/OFF, Floating and Proportional	24 V AC/DC

*: Excluded from use along with JVx05 Ball Valve Series

Technical Specifications

BASx. $08 Z$

Product Code	BAS1.08Z	BAS2.08Z
Control Type	On/Off, Floating	
Power	$\begin{gathered} \text { AC } 24 \mathrm{~V} \pm 20 \%, 50 / 60 \mathrm{~Hz}: 12.7 \mathrm{VA} \\ \mathrm{DC} 24 \mathrm{~V} \pm 10 \%: 6.5 \mathrm{~W} \end{gathered}$	$\begin{gathered} \text { Nominal AC } \\ 230 \mathrm{~V}, \\ 50 / 60 \mathrm{~Hz}: 0.08 \mathrm{~A} \end{gathered}$
Transformer	≥ 13 VA	---
Input	24 VAC $\pm 20 \%$, 24 VDC $\pm 10 \%$	100... 240 VAC (AC 85... 264 V) at $50 / 60 \mathrm{~Hz}$
Impedance	100k ohm	315k ohm
Feedback	---	
Torque	8 Nm	
Rotation Range	90°	
Rotation Time	8 s	
Cycles	60,000 full stroke cycles; 1,500,000 repositions	
Audible Noise	$<52 \mathrm{dBA}$ at 0 to 8 Nm load, at a distance of 1 m	
Electrical Connections	120 in. (3.05 m) UL 444 type CMP plenum rated cable with 19 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$ conductors and 0.25 in . $(6 \mathrm{~mm})$ ferrule ends	1.2 m (48 in.) Halogen Free Cable with $0.82 \mathrm{~mm}^{2}$ (18 AWG) conductors and 6 mm (0.25 in .) ferrule ends
Ambient Conditions	Operating: - 30 to $60^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing Storage: -40 to $85^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing	
Enclosure	IP54	
Shipping Weight	0.9 kg	

BxSx. 10

Product Code	BAS2.10	BMS2.10	BMS1.10	
Control Type	On/Off, Floating	Proportional	On/Off, Floating	Proportional
Power	Nominal AC 230 V, $50 / 60 \mathrm{~Hz}: 0.03 \mathrm{~A}$	Nominal AC 230 V, $50 / 60 \mathrm{~Hz}: 0.05 \mathrm{~A}$	$24 \mathrm{~V} \pm 20 \%, 50 / 60 \mathrm{~Hz}$. 6.2 VA $24 \mathrm{VDC} \pm 10 \%$, 1.9 W	
Transformer	---		$\geq 6.5 \mathrm{VA}$	
Input	100... 240 VAC (AC $85 \ldots 264 \mathrm{~V}$) at $50 / 60 \mathrm{~Hz}$	$0(2) \ldots 10 \mathrm{VDC},$ $0(4) \ldots 20 \mathrm{~mA}$ with field furnished 500 ohm resistor, Offset: 0... 10 VDC, Span: 2... 10 VDC	$\begin{gathered} 24 \text { VAC } \pm 20 \%, 24 \mathrm{VDC} \\ \pm 10 \% \end{gathered}$	$0(2) \ldots 10 \text { VDC, }$ $0(4) \ldots 20 \mathrm{~mA}$ with field furnished 500 ohm resistor, Offset: 0... 10 VDC, Span: 2... 10 VDC
Impedance	315k ohm	Voltage control: $100 \mathrm{k} \Omega$ Current control: $0.5 \mathrm{k} \Omega$	100k ohm	Voltage Control: $100 \mathrm{k} \Omega$ Current Control: $0.5 \mathrm{k} \Omega$
Feedback	---	0(2)... 10 VDC	---	0(2)... 10 VDC
Torque	10 Nm			
Rotation Range	90°			
Rotation Time	35 s			
Cycles	100,000 full stroke cycles; 2,500,000 repositions			
Audible Noise	$<35 \mathrm{dBA}$ at 0 to 10 Nm load, at a distance of 1 m			
Electrincal Connections	1.2 m (48 in.) Halogen Free Cable with $0.82 \mathrm{~mm}^{2}$ (18 AWG) conductors and 6 mm (0.25 in .) ferrule ends			
Ambient Conditions	Operating: - 30 to $60^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing Storage: - 40 to $85^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing			
Enclosure	IP54			
Shipping Weight	0.9 kg			

Technical Specifications

BASx.16Z		
Product Code	BAS1.16Z	BAS2.16Z
Control Type	On/Off, Floating	
Power	$\begin{gathered} \text { AC } 24 \mathrm{~V} \pm 20 \%, 50 / 60 \mathrm{~Hz}: 11.6 \mathrm{VA} \\ \text { DC } 24 \mathrm{~V} \pm 10 \%: 5.4 \mathrm{~W} \end{gathered}$	Nominal AC 230 V, $50 / 60 \mathrm{~Hz}: 0.07 \mathrm{~A}$
Transformer	$\geq 13 \mathrm{VA}$	--
Input	24 VAC $\pm 20 \%$, 24 VDC $\pm 10 \%$	100... 240 VAC (AC $85 \ldots 264 \mathrm{~V}$) at $50 / 60 \mathrm{~Hz}$
Impedance	100k ohm	315k ohm
Feedback	--	
Torque	16 Nm	
Rotation Range	90°	
Rotation Time	16s	
Cycles	60,000 full stroke cycles; 1,500,000 repositions	
Audible Noise	$<52 \mathrm{dBA}$ at 0 to 16 Nm load, at a distance of 1 m	
Electrical Connections	120 in. (3.05 m) UL 444 type CMP plenum rated cable with 19 AWG ($0.75 \mathrm{~mm}^{2}$) conductors and 0.25 in . $(6 \mathrm{~mm})$ ferrule ends	1.2 m (48 in.) Halogen Free Cable with $0.82 \mathrm{~mm}^{2}$ (18 AWG) conductors and 6 mm (0.25 in .) ferrule ends
Ambient Conditions	Operating: - 30 to $60^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing Storage: -40 to $85^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing	
Enclosure	IP54	
Shipping Weight	0.9 kg	

BxSx. 20

Product Code	BAS2.20	BMS2.20	BMS1.20	
Control Type	On/Off, Floating	Proportional	On/Off, Floating	Proportional
Power	$\begin{aligned} & \text { Nominal AC } 230 \mathrm{~V} \text {, } \\ & 50 / 60 \mathrm{~Hz}: 0.04 \mathrm{~A} \end{aligned}$	Nominal AC 230 V, $50 / 60 \mathrm{~Hz}: 0.04 \mathrm{~A}$	$24 \mathrm{~V} \pm 20 \%, 50 / 60 \mathrm{~Hz}$. 6.2 VA $24 \mathrm{VDC} \pm 10 \%$, 1.9 W	
Transformer	---		$\geq 6.5 \mathrm{VA}$	
Input	$\begin{gathered} 100 \ldots 240 \mathrm{VAC} \\ (\mathrm{AC} 85 \ldots 264 \mathrm{~V}) \\ \text { at } 50 / 60 \mathrm{~Hz} \end{gathered}$	$0(2) \ldots 10 \mathrm{VDC},$ $0(4) . . .20 \mathrm{~mA}$ with field furnished 500 ohm resistor, Offset: 0... 10 VDC, Span: 2... 10 VDC	$\begin{aligned} & 24 \text { VAC } \pm 20 \%, \\ & 24 \text { VDC } \pm 10 \% \end{aligned}$	$0(2) \ldots 10 \text { VDC, }$ $0(4) . . .20 \mathrm{~mA}$ with field furnished 500 ohm resistor, Offset: 0... 10 VDC, Span: 2... 10 VDC
Impedance	315k ohm	Voltage Control: $100 \mathrm{k} \Omega$ Current Control: $0.5 \mathrm{k} \Omega$	100k ohm	Voltage Control: $100 \mathrm{k} \Omega$ Current Control: $0.5 \mathrm{k} \Omega$
Feedback	--	$0(2) \ldots 10 \mathrm{VDC}$	--	0(2)... 10 VDC
Torque	20 Nm			
Rotation Range	90°			
Rotation Time	90s			
Cycles	100,000 full stroke cycles; 2,500,000 repositions			
Audible Noise	$<45 \mathrm{dBA}$ at 0 to 20 Nm load, at a distance of 1 m			
Electrincal Connections	1.2 m (48 in.) Halogen Free Cable with $0.82 \mathrm{~mm}^{2}$ (18 AWG) conductors and 6 mm (0.25 in .) ferrule ends			
Ambient Conditions	Operating: - 30 to $60^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing Storage: -40 to $85^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing			
Enclosure	IP54			
Shipping Weight	0.9 kg			

Technical Specifications

BxSx. 35

Product Code	BAS2.35	BMS2.35	BMS1.35	
Control Type	On/Off, Floating	Proportional	On/Off, Floating	Proportional
Power	$\begin{aligned} & \text { Nominal AC } 230 \mathrm{~V} \text {, } \\ & 50 / 60 \mathrm{~Hz}: 0.04 \mathrm{~A} \end{aligned}$	Nominal AC 230 V, $50 / 60 \mathrm{~Hz}: 0.04 \mathrm{~A}$	$24 \mathrm{~V} \pm 20 \%, 50 / 60 \mathrm{~Hz}$. 6.2 VA $24 \mathrm{VDC} \pm 10 \%$, 1.9 W	
Transformer	-		$\geq 6.5 \mathrm{VA}$	
Input	$\begin{gathered} 100 \ldots 240 \mathrm{VAC} \\ (\mathrm{AC} 85 \ldots 264 \mathrm{~V}) \\ \text { at } 50 / 60 \mathrm{~Hz} \end{gathered}$	0(2)... 10 VDC, $0(4) \ldots 20 \mathrm{~mA}$ with field furnished 500 ohm resistor, Offset: 0... 10 VDC, Span: 2... 10 VDC	$\begin{aligned} & 24 \mathrm{VAC} \pm 20 \%, \\ & 24 \mathrm{VDC} \pm 10 \% \end{aligned}$	$0(2) \ldots 10$ VDC, $0(4) \ldots 20 \mathrm{~mA}$ with field furnished 500 ohm resistor, Offset: $0 . . .10$ VDC, Span: 2... 10 VDC
Impedance	315k ohm	Voltage Control: $100 \mathrm{k} \Omega$ Current Control: $0.5 \mathrm{k} \Omega$	100k ohm	Voltage Control: $100 \mathrm{k} \Omega$ Current Control: $0.5 \mathrm{k} \Omega$
Feedback	--	0(2)... 10 VDC	--	0(2)... 10 VDC
Torque	35 Nm			
Rotation Range	90°			
Rotation Time	150s			
Cycles	30,000 full stroke cycles; 750,000 repositions			
Audible Noise	$<45 \mathrm{dBA}$ at 0 to 35 Nm load, at a distance of 1 m			
Electrincal Connections	1.2 m (48 in.) Halogen Free Cable with $0.82 \mathrm{~mm}^{2}$ (18 AWG) conductors and 6 mm (0.25 in .) ferrule ends			
Ambient Conditions	Operating: - 30 to $60^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing Storage: -40 to $85^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$, noncondensing			
Enclosure	IP54			
Shipping Weight	0.9 kg			

Compliance

United States:

UL Listed, CCN XAPX, File E27734; to UL 60730-1: Automatic Electrical Controls for Household and Similar Use, Part 1; and UL 60730-2-14: Part 2, Particular Requirements for Electric Actuators. Plenum Rated (UL 2043). Suitable for use in Other Environmental Air Space (Plenum) in accordance with section 300.22 (c) of the National Electrical Code.

Canada:

UL Listed, CCN XAPX7, File E27734; to CAN/CSA E60730-1:02: Automatic Electrical Controls for Household and Similar Use, Part 1; and CAN/CSA-E60730-2-14, Particular Requirements for Electric Actuators.

Europe:
CE Mark - Johnson Controls declares that this product is in compliance with the essential requirements and other relevant provisions of the EMC Directive and Low Voltage Directive.

Australia and New Zealand:
RCM, Australia/NZ Emissions Compliant

Dimensions

Accessories

The Non Spring Return Actuators for Ball Valves line has several kit and accessories that can be ordered separately and mounted on site.

Code Number	Description
M9000-342	NEMA 4X, IP66/67 Weathershield Kit for JVx05 Series Ball application of BxD, BMS1.10, BxF.03 and BxF.08 Series Electric Actuators (quantity 1)
M9000-400	Jackshaft Linkage Adapter Kit (quantity 1)
M9000-561	Thermal Barrier Kit. Extends the BxD, BMS1.10, BxF.03 and BxF.08 Series Electric Non-Spring Return Actuators applications to include low pressure steam (quantity 1).
M9000-606	Position indicator for Auxiliary Switches and Feedback Potentiometer Kits (quantity 5)
JOV-SW1	Auxiliary Switch Kit (one single-pole, double-throw)
JOV-SW2	Auxiliary Switch Kit (two single-pole, double-throw)
M9300-100	Threaded Conduit Adapters for 12.7 mm (1/2 in.) electrician's fittings (quantity 5)
M9300-140	External Auxiliary Feedback Potentiometer 140 Ohm
M9300-1K	External Auxiliary Feedback Potentiometer 1k Ohm
M9300-2K	External Auxiliary Feedback Potentiometer 2k Ohm
M9300-10K	External Auxiliary Feedback Potentiometer 10k Ohm
M9310-500	Ball Valve Linkage Kit for applying DM1.10 Series Electric Actuators to JVx05 Series Valves (quantity 1)
M9000-700	Universal ball valve linkage kit for mounting BASx.08Z and BxSx.10 actuators to other manufacturers ball valves

Auxiliary Switch \& Potentiometer Feedback Kit

Mounting the kit, a connection is created between the shaft hub of the actuator and the kit.
The position of the actuator is transferred to the gear's kit.

1. Before mounting the kit, rotate the actuator and the kit itself counter clock wise till the end position in order to align the holes on the coupler with the pins on the kit and snap the kit onto the BMS1.10 actuators.

2. To remove the kit Place a screwdriver underneath the tab on each side of the actuator and firmly pull back the tab.

Auxiliary switches kits

The auxiliary switches kits are used to notify starting and end position or to perform switching functions in any angular position. The switching points can be adjust by means of a dial.

JOV-SW1

JOV-SW2

Feedback potentiometer kits

The feedback potentiometers are used as damper position indicators or as positioners for actuators operated in parallel.

